
MATHEMATICS OF COMPUTATION, VOLUME 31, NUMBER 137
JANUARY 1977, PAGES 235-250

On the Efficiency of Algorithms
for Polynomial Factoring

By Robert T. Moenck*

Abstract. Algorithms for factoring polynomials over finite fields are discussed. A
construction is shown which reduces the final step of Berlekamp's algorithm to the
problem of finding the roots of a polynomial in a finite field Zp.

It is shown that if the characteristic of the field is of the form p = L 21 + 1,
where I L, then the roots of a polynomial of degree n may be found in
O(n log p + n log2 p) steps.

As a result, a modification of Berlekamp's method can be performed in
O(n + n log p + n log p) steps. If n is very large then an alternative method finds
the factors of the polynomial in O(n2log n + n lognlogp). Some consequences and
empirical evidence are discussed.

I. Introduction and Overview. Polynomial factorization is an important operatior
in algebraic manipulation. It is important not only in itself but also as a subalgorithm
in other processes such as symbolic integration [1] or simplification [2] or solving poly
nomial equations [3]. Naturally we wish to have a method which is quick; and so, we
are led to consider the efficiency of factoring algorithms.

Generally, in computer algebra one is concerned with factoring monic polynomials
in one or more variables over the integers. Other factorization problems can generally
be reduced to this case. A method due to Kronecker [4] is generally used to prove
that such polynomials can be factored uniquely up to the order of the factors.
Kronecker's method can be used as a basis of an algorithm for factoring polynomials
[5]. However, the algorithm is very inefficient; and the time it requires can be shown
to grow exponentially in the degree of the polynomial to be factored.

The inefficiency of the above method has led to the development of homomor-
phism methods. These methods reduce the problem to the univariate case with the
polynomial reduced modulo a prime p. The resulting polynomial is factored over the
finite field Zp = GF(p). Any factors over Zp are used to determine factors over Z.
Currently, the best method for doing this is based on Hensel's lemma. Musser [6] or
Wang and Rothschild [7] give a detailed exposition of the considerations involved in
applying Hensel's lemma to the factoring process.

Here we are mainly concerned with the problem of finding a factoring over Zp

Received August 22, 1974; revised March 18, 1976.
AMS (MOS) subject classifications (1970). Primary 68A15, 68A20, IOM05, 12C05; Second-

ary 12-04, 13F20.
Key words and phrases. Algebraic manipulation, polynomial factoring, roots in finite fields,

analysis of algorithms.
* This research was supported by NRC Grant No. A-5549, A-8237.

Copyright ? 1977, American Mathematical Society

235

236 ROBERT T. MOENCK

Much of the work in this area has been done by Berlekamp [8]. He produced the first

complete factoring algorithm which works in O(n3p) steps, to factor a polynomial of
degree n over ZP. One of the handicaps of this method was the p term in the timing
analysis. This restricts the method to relatively small fields. Later Berlekamp [9] re-
fined his method so that the factoring problem reduced to computing the roots of a
polynomial in a finite field. He showed how the latter problem could be solved in time

proportional to p1/4 log p3/2.
In this paper we give (Sections II-IV) a more direct reduction to the root finding

problem and a method for finding the roots of a polynomial of degree k in
O(k2 logp ? k log2p)** steps for special choices of p. These imply that Berlekamp's
method can be performed in O(n3 + n2logp + n log2p) steps for most cases. It is further
shown (Sections V-VI) that a polynomial can be factored in O(n2(log2n + logn logp))
steps if N is large. Finally (Section VIII) we indicate methods for computing primitive
roots of unity and irreducible polynomials as are used in the new algorithms. In Section
VIII we present a few empirical results and draw some conclusions regarding these new
methods.

II. An Overview of Berlekamp's Algorithm. First let us note that the general fac-
toring problem reduces to that of factoring a monic polynomial with no repeated fac-
tors (i.e., square-free). This is because we can divide by the leading coefficient to make
the polynomial monic and we can use the following well-known method for finding re-

peated factors. Consider the case of a polynomial U(x) with repeated factors f2(x), i.e.,

U(x) = f,(X)
.

fn(

differentiating:

U'(x) = f 1 (x)f~n(x) + nf1 (X)f21 (x)f2 (x)

= f
1(X)(fi (X)f2(X) ?+ nf1 (x)f (x))x

(2.1) f2n-7(x) = GCD(U(x), U'(x)).

Here and throughout the paper GCD denotes the monic greatest common divisor of the
two polynomials. The repeated factors may now be divided out of U(x) to make it

square free.
Berlekamp's algorithm for factoring polynomials over a finite field Zp is a major

milestone in the study of the factoring problem. Since we are going to look at some
improvements, it is pertinent to briefly review the basic method. The algorithm rests
on three major observations.

(i) The k factors fi(x), 1 < i < k, of a square-free monic polynomial U(x) are
relatively prime in the Euclidean domain Zp [x]. This means they may be applied in

2 2 ** Notation. All logarithms in this paper are base 2. The notation O(k log p + k log p) has
been adopted here to indicate the dominant terms in a two parameter cost function. This would be
more precisely O(clk log p + c2k log p) for some constants cl and c2. The constants have been
dropped here and throughout the paper to simplify the expressions.

POLYNOMIAL FACTORING 237

the following specialization of the well-known Chinese Remainder Theorem [10].
THEOREM 1. Given a set {hf(x)} of pairwise relatively prime polynomials and a

set of residues {Si(x)}, deg(Si) < deg(fi) in Zp [x], there is a unique polynomial V(x)
E Zp [x] such that:

(2.2) (a) deg(V) < deg(Hlfi) = deg(U),

(b) V(x)-=_Si (x) mod fi(x), 1 < i < k.

This implies that given V(x) and the residues Si(x) we can compute the factors

by taking GCDs

(2.3) hi (x) = GCD(V(x) - Si (x), U(x)).

(ii) It is worthwhile to choose a V(x) such that Si E Zp (i.e., the residues are

field elements, not polynomials). Then we can apply Fermat's

THEOREM 2. For all a E Zp, aP = a. ?
When applied to the relationship (2.2) of the residues we get

V(x)P SI? mod fi(x),

=Si V(x) mod fi(x).

Now, V(x)P V(xP) by the Multinomial Theorem in Zp [x]. Therefore, we should

look for a polynomial V(x) such that

V(xP) - V(x) 0 mod hi(x).

It is sufficient to find a V'(x) such that

(2.4) V'(xP) - V'(x) 0 mod U(x),

since hi(x) I U(x) implies that

V'(xP) - V'(x) 0 mod hi(x).

(iii) The third observation is that if we construct a matrix Q such that its rows

qj are of the form

n-1
xP' E qijxi mod U(x) for O j n -1,

i=O

then finding a polynomial V(x) can be viewed in terms of matrix operations as

(2.5) V[Q -I] = O

where V is the vector of coefficients of V(x). In other words, the problem reduces to

finding the null space of the system (2.5).
In general one gets a set of null space vectors { Vj} including the trivial one

V(1, 0, . .. , 0). Berlekamp [8] shows that the number of such vectors is equal to k

the number of factors of U(x). To find the residues {S4} which correspond to the fac-

tors, Berlekamp suggested trying successive elements of the field until some are found

which produce nontrivial factors.

238 ROBERT T. MOENCK

Note that if two (or more) factors give the same residue of V(x):

(2.6) V(x) - S = f1 * a = f2 * b = f1 * f2 c C,

then the GCD operation of (2.3) will yield their product and not the individual factors.
However, each V(x) will produce a different factoring and by trying all the { V(x)} all
the factors can eventually be produced.

Timing of the Algorithm. We can analyze the number of steps in the algorithm
as a function of the cardinality of p and of n the degree of U. First, we assume that
the prime p can fit into a computer word and thus all operations on field elements,
except finding inverses, use 0(1) steps. If p is large, it is necessary to compute field
inverses when they are required. The best methods [11] to do this computation use
0(log p) field operations.

We note that multiplying or dividing a polynomial of degree n by one of degree
m can be done in 0(mn) field operations using the standard methods. As a corollary,
we see that squaring a polynomial of degree n - 1 and computing its residue with re-
spect to another polynomial of degree n can be done in 0(n2) field operations. Since
u(x) is monic, xP mod u(x) can be computed by repeatedly squaring in 0(n2 log p)
steps. The remaining n - 2 rows of the matrix Q, xP mod u(x) can be produced in
0(n3) steps. Computing the null space of the matrix Q - 1 can be done in
O(n3 + n logp) steps using a standard triangularization algorithm. Collins [12] has shown
that the GCD operation of (2.3) can be performed in 0(n2 + n logp) steps.

If there are k factors, in the worst case, each V(x) will yield only one prime fac-
tor. To find this factor we might have to try every element in the field. This means
that the algorithm is bounded by the last step which requires 0(kp(n2 + n log p)) field
operations. If k = 0(n), the algorithm may require 0(n3p) steps. It is the factor p in
this expression which restricts the application of the algorithm to small primes.

III. Improvements to Berlekamp's Algorithm. A method for improving Berlekamp's
algorithm is to aid the computation of the residues {S4j given a null space vector of
coefficients V. This may be done by following a recommendation of Knuth [13, p.
396] and Berlekamp to retain s as a parameter in the computation of

(3.1) GCD(U(x), V(x) - s).

This will compute a polynomial in s and is an application of:
THEOREM 3 (RESULTANT THEOREM [14]). Given two polynomials A(x, s),

B(x, s), their GCD will be nontrivial if and only if their resultant

Res(A, B) = r(s) = 0. o

Thus the required residues {Sk} will be the points at which r(s) is zero, i.e., the
roots of r(s). The resultant of two polynomials is closely related to their GCD in that
it can be considered as the determinant of their Sylvester matrix.

Collins [15] has given an efficient modular algorithm for computing resultants.
From his work we see that if deg(U) = n, then deg(Res(U, V - s)) < n.

POLYNOMIAL FACTORING 239

The basic steps of Collins' algorithm, applied to this case are:
(1) for i := O until n do

begin
substitute a new value Si for s in V(x) - s;
compute a univariate resultant: ri:= Res(U, V - Si);

end
(2) Interpolate the values {ri} at the points {Si} to get a polynomial r(s). n
This procedure can be carried out in 0(n3 + n2 log p) steps. Collins' Reduced

PRS Algorithm provides an alternative method for computing resultants. However, it
would have the same 0(n3 + n2 log p) bound as the method above. An advantage to
the modular method is that if any of the ri are zero they disclose a residue Si which
will give a nontrivial factor without having to do any more work.

Since it costs 0(n3) to compute the resultant for each polynomial V(x), we want
to avoid having to do it once for each Vi(x). We will only have to do this if the first
nontrivial basis polynomial V1(x) does not yield all the k irreducible factors. Relation
(2.6) shows that this will occur if two or more of the residues Si of V1 (x) are the
same. If the Si are independent random variables in the range 0< Si < p - 1, then
the probability that they will be distinct is:

k-I
prob(p, k) = fi (p -i)/Pk

i0O

If k < < p, then this probability is close to 1.
Therefore, the probability that more than one V(x) must be used to find all the

factors of U(x) is very low if the field characteristic p is large. In practice, it is very
unusual for the first nontrivial basis polynomial V1(x) not to provide all the factors if
p is large with respect to k and n.

We have reduced the factoring problem to that of finding the roots of a poly-
nomial r(s) of degree n in the finite field Zp. To solve this problem, we can use the
well-known result:

LEMMA 4 [16, p. 128]. In a finite field GF(q); b(s, m) = sqm - s, is the product
of all monic irreducible polynomials of degree which divides m. n

A special case,

b(s, 1) =SP -s,

is the product of all monic linear polynomials in Zp [x] . So to reduce our search for
roots of r(s) we can compute

g(s) = GCD(r(s), sP - s).

If there are k factors of U(x), g(s) will be of degree k and will have multiple
roots if the basis polynomial V(x) does not yield all the irreducible factors. We can
test for these multiple roots and remove them using the construction (2.1). The multi-
ple roots will also tell us which of the factors given by V(x) - Si are degenerate. This
information will aid in application of other basis polynomials V(x), should it prove
necessary.

240 ROBERT T. MOENCK

One method of finding the roots of g(s) is to test each element of the field.
Previously, we had to compute a GCD each time we tested a field element at a cost of
O(n2 + n log p) steps. Now we need only evaluate the polynomial g(s) at a cost of 2k
operations. So the time for this root finding is bounded by O(np) steps.

In order for this evaluation not to dominate the previously largest step of the
algorithm,

n +n2 logp>cnp,

for some constant c, or p = 0(n2). Therefore, this method is appropriate for medium
sized primes. We will call the procedure described in this section the Modified Berle-
kamp Algorithm. In summary we can state:

THEOREM 5. Most monic square-free polynomials of degree n can be factored
over a finite field Zp in 0(n3 + n2logp + R(n)) steps, if p > > n and R(n) is the
number of steps needed to find the roots in the field of a polynomial of degree n. o

IV. Finding Roots of Polynomials in Large Finite Fields. In the previous section
we reduced the factoring problem to that of finding the roots of a polynomial g(s).
Berlekamp [9] discusses a probabilistic method for finding the roots of a polynomial
in a finite field Zp. He gives the timing of the method as 0(pl /4 log p2 /3). In this
section we will discuss ways in which this method may be improved upon.

We can observe that if we are free to choose the prime characteristic (as we are
in this case), then we can choose fields which expedite the discovery of the roots of
the polynomial.

In particular it is useful to choose primes p such that p - 1 is highly composite
(e.g. p = L * 21 + 1, where L is small and 1 - L). In this case we can employ a "di-
vide and conquer" technique to refine the multiplicative subgroup of Zp containing a
root. At most 1 ? log p such refinements are necessary to find a root. This means
that the time to find the roots of the polynomial is a function of log p rather than
of p.

We assume that the roots of g(s) are nonzero and distinct. This can easily be
checked by the construction (2.1).

A special case of Lemma 4 is that c(s) = sP-1 - 1 is the product of all nonzero
linear terms over Z . Its roots are members of the multiplicative subgroup Z*. Mem-
bers of this group are called p - 1st roots of unity and a generator of the group is a
primitive p - 1st root of unity.

Note that c(s) factors as

C(s) = (s(Pl)/2 + j)(S(P-1)2 _ 1),

so that half of the p - 1st roots of unity are also (p - 1)/2th roots of unity. In gen-
eral, c(s) has 1 + 1 factors of the form:

ci (s) = sL -2 1 - 1 0 < i < I,

ci(s) is the product of all (p - 1)/2'th roots of unity of ZP.
Using this fact, we can separate the roots of a polynomial g(s) into those roots

POLYNOMIAL FACTORING 241

which are L * 21--1 st roots of unity and those which are not, by taking

ri- I(s) = GCD(g(s), sL2 1 i 1 - 1).

Now we can describe the refinement process. Let ri I(s) be a product of L
211-+ 1 = -

- 1)/21-1 st roots of unity. Then

(4.1) r1(s) = GCD(r1_ (s), SLt2li 1)

is a product of all roots of ri(s) which are (p - 1)/2ith roots of unity. If

(4.2) roll (S) = re(S) * ti(S)

then t1(s) is the product of all roots of ri-I (s) which are (p - 1)/2i-1 st roots of unity
but not (p - 1)/2'th roots of unity. This means that t1 has the form

tV(s) =Hl(s - w 2i' 1)

where w is a primitive p - 1st root of unity and the j's are odd. If 4iis another (not
necessarily distinct) primitive p - 1 st root of unity, then 4' = m where (p - 1, m) = 1.
In particular, m is odd. Consider forming

(4.3) t(S) =fl(S - j-2i-1 . p2i-1) =fl(S - w(i+m)21 1) =fl(S- W2'(i+m)/2),

since j and m are odd.
Thus the roots of ti'(s) are (p - 1)/21th roots of unity and the refinement process

can be applied recursively to ri(s) and t'(s). Once the roots of t'(s) are found the
roots of ti(s) can be computed by dividing by 2i-l.

We can express the transformation of ti(s) to t'(s) in terms of the coefficients of

ti(s).
If

k

ti(S) = E AiS, ak 1,
j=O

then expanding (4.3) we see
k

(4.4) t;(s) = E ajxhi(k)2'.
j0=

This means the transformation of ti(s) to t'(s) can be performed in k operations
given the coefficients of ti(s) and 42i-l. We will call the procedure to perform this
transformation, Convert.

Now we can state an algorithm to find the roots of a polynomial based on rela-
tions (4.1), (4.2) and (4.4).

Algorithm: Roots(r, 4, i, H).
Input: (1) the polynomial r(s);

(2) i a primitive (p - 1)/21th root of unity;
(3) an integer i;
(4) H a list of polynomials of the form:

h= s(P1)/21i 1 mod r(s), 0 < i 1.

242 ROBERT T. MOENCK

Output: The roots of r(s) in Zp.
Steps.
(1) Basis: if deg(r) = 1 then return J-r0};
(2) Direct-Search: else if 2 (p - 1)/21

then return Direct-search (r, ,, p - 1)/21);
(3) Separation Root: else begin

g(s) := GCD(r(s), hi(s));
f(s) = Convert(r(s)/g(s), 4,);
R :=0;

(4) Recursion: if deg(g) > 0
thenR :=RURoots(g, 42,i+ 1,H);
if deg(f) > 0
then R := R U Roots(f, 42, i + 1, H)14;
Return R
end. n

The algorithm would be invoked as:

R := Roots(r(s), 4, 1,1H);

where 4 is a primitive p - 1st root of unity. The operation U is union.
The algorithm Direct-search (r, 4, (p - 1)/21) is invoked to find the roots of r(s)

in the multiplicative group of 4 by direct evaluation. Since there are only L members
of this group and L is chosen to be small, the operation does not take long to do.
Also if L is composite, then a method related to the Roots Algorithm can be used to
further refine the group structure of the field and the roots of the polynomials.

Timing of the Algorithm. The polynomials Hi = S(p-1)12i - 1 mod r(s), 1 < i
? 1, can be computed in O(k2 log p) steps where k = deg(r). Similarly, each GCD op-
eration can be performed in O(k2 + k log p) steps. The worse case situation for the
algorithm is when the refinement of the subgroups does not separate the roots at all.
In this case the Direct-search algorithm must be used to separate them. There can be
at most log p refinements and so the total cost is O(k2 log p + k log2 p + kL) steps.

In summary we have:
THEOREM 6. In a finite field Zp where p = L * 21 + 1 and L - 1, the roots of a

polynomial of degree k can be computed in O(k2 log p + k log2 p) steps. o
COROLLARY 7. Over such a field a polynomial of degree n can be factored in

O(n3 + n210gp + n log2p) steps, if p > > n. 5

V. Faster Methods. The removal of the limit on the size of the field for the
algorithm raises the possibility that the number of steps can be pared down further.
This can be done if we are considering the problem of factoring polynomials of very
high degree.

The timing estimates for the algorithms which we have used so far are reasonably
consistent with the observed behavior of the algorithms in real algebraic manipulation
systems for the size of problems usually encountered. However, if we are dealing with
very large problems, we can use a set of algorithms with slower growing timing functions.

POLYNOMIAL FACTORING 243

It can be shown (see for example [17]) that two polynomials of degree n can be mul-
tiplied together in O(n log n) steps. Similarly, a polynomial of degree 2n can be divided
by one of degree n in O(n log n) steps and the GCD of two polynomials of degree n
can be computed in O(n log2 n + n log p) field operations.

If we allow such algorithms to be considered, then we might ask if they can be

of help? The answer is yes, but we must extensively reformulate the algorithm. The

bounding step now becomes the matrix operations. Although Strassen [18] has shown
that matrices can be multiplied or triangularized in O(n2,81) steps, we can even im-
prove on this limit.

Our first observation is that we can find a partial factoring of a polynomial using
a method due to Golomb et al. [19] based on Lemma 4. This partitions the factors

of a polynomial into products of all factors of the same degree. The following algo-

rithm achieves this:
Algorithm: Distinct-Degree Factors (U).
Input: the polynomial U(x) E Zp [x].
Output: the distinct-degree factors di(x)

U(x) = lidi (x), di(x) = fll ,(x), where deg(j1) = c, Vi.

Steps.
(1) Initialization: h(x) := xP mod U(x),

g(x) i := 1;
(2) Iteration: while j < deg(U)/2 do

begin
h(x) = h(x) t p mod U(x);

j :=j + 1;

di (x) : = GCD(h(x) - x, U(x));
Nontrivial Factors: if di(x) = then

begin

U(x) :=U(x)ldi(x);
h(x) := h(x) mod U(x);
i :=i+ 1

end
end

(3) Completion: if U(x) $ 1 then di(x) := U(x); o
By Lemma 4 at the jth iteration g(x) is the product of all polynomials in Zp [x] of
degree dividing j. Since all lower degree factors have been removed from U(x), the
GCD operation finds all factors of U of degree j. Using the classical methods of Sec-
tions II-IV the algorithm can be shown to take O(n3 + n2logp) steps. However, we

have:
THEOREM 7. The Distinct-Degree Factors algorithm can find the factors of a

polynomial of degree n in O(n2 log2 n + n2 log n log p) steps.
Proof. xP mod U(x) can be built up using the repeated squaring technique in

O(n log n log p) steps. The GCD operation can be performed in O(n log2 n + n log p)

244 ROBERT T. MOENCK

steps [17]. Since the loop may be executed at most n/2 times, the bound is
0(n2 log2 n + n2log n log p) steps. o

VI. Splitting Distinct-Degree Factors. In the previous section we reduced the
factoring problem to that of separating products of the same degree. We are given

k

d(x)= II (fi(x)),
i=-1

where deg(d) = n = k * m, deg(fi) = m, 1 6 i < k-
If we can find a monic irreducible polynomial r(x) E Zp [x], deg(r) = m, then

we can reduce d(x) mod(r(x))' to compute the polynomial
k

F(y) = E S i,
k=O

where

d;(x) = S,(x) * (r(x))' + d'i 1(x) for i = k, k - 1, .

d'(x) = d(x).

Now F(y) is a monic polynomial of degree k with coefficients Si(x) in the finite field

Zp [x] I(r(x)) - GF(pm). If we can find the roots {ti} of F(y) in the field, then we
can find the factors fi of d(x).

Since
k

F(y) = 1 (Y - ti),
i=o

this implies k

d(x) = H (r(x) - ti(x)).
i=O

Unfortunately, we can no longer apply the Roots Algorithm of Section IV, since
pm - 1 is not highly composite. Instead we can use a construction of Berlekamp's
[9] based on:

LEMMA 8. In GF(p m) the product of all linear factors is

(6.1) YPm -Y = n (Tr(y)-s),
s=0

where Tr(y) is the trace:
rn-i

(6.2) Tr(y) =
m

yP1.

i=o
Then

m-1
F(y)= || GCD(F(y), Tr(y) - s). o

s=o

Therefore, we can find a factorization of F(y) by checking:

(6.4) G(y) = GCD(f(y), Tr(y) - s), 0 < s < p.
We can find the {Sj} which will yield nontrivial factors by employing the resultant
construction of Section III. This will give

rn-i

Res(f(y), Tr(y) - s) = r(s, x) = E Ci(s)x1
i=o

POLYNOMIAL FACTORING 245

where
k

Ci (s) =E CiS,
Cii IE Zp

i=O

The set of common zeros of the {Ci(s)} will be the zeros of the resultant r(s, x).
This can be computed by forming:

C(s) = CO(s), C(s) = GCD(C(s), Ci(s)) for i = 1, . .. , m - 1.

The zeros of C(s) a polynomial over Zp can now be computed using the Roots Algo-
rithm of Section IV.

Each trace Tr(y) - s for fixed s, 0 < s < p, contains pm-i roots of the field
GF(pm).

This means that in general (6.4) will not yield just one root but a factor of F(y).
The worst case situation occurs when all the roots of F(y) fall into the set of one
trace, i.e., F(y)lTr(y) - s. The ideal situation occurs when each set contains only one
root of F(y). When this happens, all the roots can be found by applying (6.4) k - 1
times. If the roots are independent random variables, the optimum situation will occur
with probability:

k-1
prob(p, k) = (P - i)/pk.

i=O

If k < < p and for large p, this will be very close to 1. This implies that with a very
high probability only one trace must be computed to find all the roots of F(y).

If only one trace does not yield all the roots then, as Berlekamp shows (6.1)
may be rewritten:

p-1

ypm -y= 1 (Tr(caiy) - s), O < < m,
s=O

where a is a root of an irreducible polynomial of degree m over Zp . In our case,
GF(pm) = Zp [x] /(r(x)); and so, we can choose the irreducible polynomial to be r(y)
and a suitable root will be a = x. Thus we can find factors of F(y) by checking:

(6.5) GCD(F(y), Tr(xjy) - s), 0 <j< m, 0 < S <p.

Berlekamp shows that not all j in (6.5) can give a trivial factorization of F(y); and
therefore, all roots of F(y) must be eventually found by (6.5).

Timing of the Algorithm. For arithmetic operations on a, b e Zp [x] /(r(x)):

a + b uses 0(m) basic steps,
a * b uses 0(m log m) basic steps,
a-i uses 0(m log2m + m log p) basic steps.

For A(y), B(y) E GF(pm)[Y], deg(a) = deg(b) = k:

A + B uses 0(km) basic steps,
A * B uses 0(k log k(m log m)) basic steps,
GCD(A, B) uses 0(k log2 k(m log m) + k(m log2 m + m log p)) basic steps.

246 ROBERT T. MOENCK

So to form yp mod F(y) uses 0(m k * log k * log m * log p) basic steps. From this

Tr(y) = E yP mod F(y)
i=o

uses 0((log p + m)m * k * log k * log m) basic steps.
Computing the resultant Res(F(y), Tr(y) - s) is no harder than forming k GCDs

and so takes

0(k2m(log2 k log m + log2 m + log p)) basic steps.

The m GCDs of the coefficient polynomials takes at most 0(mk(log2 k + log p))
basic steps and as shown in Section IV the Roots Algorithm can be performed in
0(k2 log p + k log2 p) steps.

Assuming that only one trace need be computed, the step which bounds the algo-
rithm is computing the resultant. In summary, we have:

THEOREM 9. Over the finite field GF(pm) where p = L * 21 + 1 and 1 - L the
roots of a polynomial of degree k can be found in 0(k2m(log2klogm + log2m + logp))
basic steps. n

COROLLARY 10. If d(x) is a distinct degree partition of the factors {fi(x)} of a
polynomial over Zp then the k factors can be found in 0(n2 (log2 n + log p)) basic
steps, where deg(d) = n.

Proof. The time for finding the roots in GF(pm) is maximized when k = 0(n)
and m - 0(1) since n = km. Combining this result with that of Theorem 7, we get:

COROLLARY 11. The factors of a polynomial of degree n over a finite field Zp
can be found in 0(n2 (log2 n + log nlogp)) steps, where p - 1 is highly composite. o

We should note that if we dismiss the use of asymptotic algorithms, then the
methods described in the last two sections can be performed in 0(n3 + n2 log p) steps.
This is the same bound as achieved by the methods of Sections II to IV.

As a nonlinear lower bound on the factoring problem we have:
THEOREM 12. At least n log(n/e) rational multiplications are required to factor

a polynomial of degree n over the integers.
Proof. Any factoring algorithm must divide out the factors it generates, from

the factored polynomial. Clearly, this operation must be at least as difficult as multi-
plying the factors together to verify that they form the polynomial to be factored.
In the extreme case where all factors are linear, Strassen [20] has shown that such a
product requires n log(n/e) field multiplications. 0

While the lower bound is for an infinite field and we have been considering fi-
nite fields, it is probably reasonable to assume that a similar result holds for finite

fields. From Strassen's work it could be conjectured that a bound of

n(1 - I/p) log(n(I - I/p))

would hold in a field of characteristic p.

VII. Finding Primitive Roots and Polynomials. In the root finding algorithms
we have used certain field elements as part of the algorithm. We should indicate that
these are fairly easy to find.

POLYNOMIAL FACTORING 247

Primitive roots of unity can be found quite readily using a method which depends
on the

THEOREM 13 [16]. In the finite field GF(q), e is a primitive q - 1st root of
unity if and only if

e q-)ai/1 modq

for all prime divisors al, . . ., ar of q - 1. n
There can be at most log q prime divisors of q - 1, and to form e(q-1)lai, there

can be taken at most O(log q) field operations. So, to test a trial primitive root re-
quires O(log2p) operations in Zp. Not only that, such elements are fairly common in
the field since there are O(q - 1) = O(q - 1) of them in the field. This implies that
primitive p - 1st roots can be easily found.

Finding irreducible polynomials for the Roots in GF(pm) algorithm is more diffi-
cult but we can use:

THEOREM 14 [21, p. 221]. Let K be a field and n an integer > 2. Let a E K and
a = 0. If for all prime divisors c of n, a f KC (a does not have a cth root in K); and
if 4 I n and a f -4K4, then xn - a is irreducible in K[x]. o

We can test if a has a cth root in Zp by testing for the existence of any linear
factors of xc - a. Applying the method of Section V, this involves computing

ec(x) = GCD(xP - x, xc - a).

We see that

xP axp-c mod xc-a,

-alxP-lc mod xc - a,

where 1 = [p/cl.
Therefore, ec(x) = GCD(alyP lc - ye yc - a).
Therefore, if ec(x) = 1 for all prime divisors c of n, then xn - a is irreducible in

K[x] . Again, there can be at most log n prime divisors of n. To compute eC for all
of them would take 0(n2 log np) steps or O(n log3 n log p) steps using an asymptotic
method.

VIII. Conclusions. As a test of practicality, the modifications of Berlekamp's
algorithm were programmed using an implementation of the SAC-1 [22] algebraic
manipulation system on a Honeywell 6050 at the University of Waterloo. SAC-1 con-
tains the original Berlekamp algorithm and the distinct degree method as part of the
system. The four algorithms tested were:

(i) the original Berlekamp algorithm;
(ii) the modified method, computing roots of the resultant by evaluating at suf-

ficiently many points in the field;
(iii) the modified method using the Roots Algorithm;
(iv) the distinct degree factoring method (DDF).
Some sample times for these four methods applied to a polynomial of degree 14

248 ROBERT T. MOENCK

for various primes are given in Table I. The top of the table shows that for small and

moderate sized primes, the modifications are slightly slower than Berlekamp's algorithm.

This is to be expected since they have the overhead of computing a resultant. How-

ever, for primes of the order 100, the modifications can already be faster than the

original algorithm. Above this point the Berlekamp algorithm may occasionally be

faster than the modifications. This occurs when the algorithm is "lucky" enough to

find the factors after only trying a few GCDs.

The lower part of the table shows the results for large primes. Blank entries in

the table indicate the program ran out of time (2 mins.) before it found all the factors.

It can be seen that the Roots Algorithm is no slower than the modified method for

small primes and is significantly faster for large primes. Also the Roots modification

is always within a factor of two of the speed of the distinct degree method even though

the latter gives less information. The time for the Roots modification using a prime
- 1010 is only four times that using the prime 17.

A problem posed by Johnson and Graham [23] has been used as a bench mark

for algebraic manipulation systems. This problem involves computing the resultant of

two bivariate polynomials, factoring the result and finding the real roots of the factors.

The most time-consuming part of the problem is the factoring operation since it in-

volves a polynomial of degree 40 with integer coefficients in the range ? 1023. The

result is four polynomials of degree 10 with integer coefficients in the range ? 106.

The fastest computers, with the most powerful routines, based on Berlekamp-

Hensel algorithms used more than five minutes of computer time to factor this poly-

nomial [24], [25]. The SAC-i implementation of the Berlekamp-Hensel algorithms

[6] used 15 minutes to factor the polynomial on a Honeywell 6050. However, a spe-

cial purpose SAC-1 program, on a Honeywell 6050, using the Roots modification,

working modulo 1790967809 = 427-222 + 1, was able to discover the factors in under

three minutes. The distinct degree method operating with the same prime required 1.5

minutes to discover the degrees of the factors.
These tests raise the possibility of dispensing with Hensel's lemma when using the

modular factoring to find factors over the integers. The prime p would be chosen to

majorize any coefficient of a factor and combinations of the resulting ZP-factors could

be tested as trial integer factors. This approach would be most reasonable if the cho-

sen prime is less than the word size of the computer.
However, if the bound on the coefficients of factors is larger than the word size,

we expect that a hybrid method would be more reasonable. In this case the overhead

of doing multiprecision modular arithmetic throughout the course of the computation

would slow the algorithm considerably. The hybrid would involve factoring modulo a

word sized prime and then applying Hensel's lemma to the results. Since the Hensel

construction would not have to lift the results as far as usual, this approach would be

faster.
An additional benefit of factoring with large primes, is that in general, fewer irre-

ducible factors are produced. This means that to find the factors over the integers fewer

combinations of small factors need be tried.

POLYNOMIAL FACTORING 249

Time (in seconds) for factoring and polynomial of degree 14

With Roots DDF Degree of
Prime P Berlekamp Modified algorithm algorithm Factors

17 2.41 3.62 3.62 1.95 1, 2, 3, 3, 5
47 3.81 4.66 4.69 2.5 1, 1, 3, 3, 6
83 2.5 2.5 2.5 3.32 14

107 7.05 4.72 4.66 2.91 4, 10
137 6.3 4.78 4.86 2.5 1, 1,1, 1,2,2,3,3
199 3.56 4.4 4.45 3.3 7, 7
251 8.88 5.63 5.66 3.04 2, 2, 2, 4, 4
331 4.4 5.17 5.22 3.15 4, 10
449 11.7 5.17 5.05 3.32 2, 12

40961 42 7.96 3.85 1, 1, 1,2, 2, 3,4
= 5-213 + 1

1790967809 10.8 6.5 1, 2, 4, 7
= 427-222 + 1

1811939329 13.1 6.28 1, 1, 2, 3, 3, 4
= 27-226 + 1

1835008001 14.8 6.28 1, 1, 2, 2, 3, 5
= 875.221 + 1

1863319553 14.5 6.62 1, 1, 5, 7
= 1777-220 + 1

TABLE 1

Department of Computer Science

University of Waterloo

Waterloo, Ontario, Canada

1. R. H. RISCH, Symbolic Integration of Elementary Functions, Proc. 1968 IBM Summer
Inst. on Symbolic and Algebraic Manipulation, IBM, R. Tobey (Editor), pp. 133-148.

2. B. F. CAVINESS, On Canonical Forms and Simplification, Ph.D. Thesis, Carnegie-Mellon
Univ., 1967.

3. D. Y. Y. YUN, "On algorithms for solving systems of polynomial equations," SIGSAM
Bull., No. 27, ACM, New York, September 1973.

4. B. L. VAN DER WAERDEN, Modern Algebra, Vol. 1, 2nd rev. ed., Springer, Berlin,
1937; English transl., Ungar, New York, 1949. MR 10, 587.

5. D. JORDAN, R. KAIN & L. CLAPP, "Symbolic factoring of polynomials in several vari-
ables," Comm. ACM, v. 9, 1966.

6. D. R. MUSSER, Algorithms for Polynomial Factorization, Ph.D. Thesis, Univ. of Wiscon-
sin, 1971.

7. P. S. WANG & L. P. ROTHSCHILD, "Factoring polynomials over the integers," SIGSAM
Bull., No. 28, ACM, New York, December 1973.

8. E. R. BERLEKAMP, Algebraic Coding Theory, Chap. 6, McGraw-Hill, New York, 1968.
MR 38 #6873.

9. E. R. BERLEKAMP, "Factoring polynomials over large finite fields," Math. Comp., v. 24,
1970, pp. 713-735. MR 43 #1948.

250 ROBERT T. MOENCK

10. J. D. LIPSON, Chinese Remainder and Interpolation Algorithms, Proc. 2nd SIGSAM
Sympos., ACM, New York, 1971.

11. G. E. COLLINS, "Computing multiplicative inverses in GF(p)," Math. Comp., v. 23,
1969, pp. 197-200. MR 39#3676.

12. G. E. COLLINS, Computing Time Analyses of Some Arithmetic and Algebraic Algorithms,
Proc. 1968 IBM Summer Inst. on Symbolic and Algebraic Computation.

13. D. E. KNUTH, The Art of Computer Programming. Vol. 2: Seminumerical Algorithms,
Addison-Wesley, Reading, Mass., 1969. MR 44 #3531.

14. J. V. USPENSKY, The Theory of Equations, Chap. 11, McGraw-Hill, New York, 1948.
15. G. E. COLLINS, "The calculation of multivariate polynomial resultants," J. Assoc. Com-

put. Mach., v. 18, 1971, pp. 515-532. MR 45 #7970.
16. A. A. ALBERT, Fundamental Concepts of Higher Algebra, Univ. of Chicago Press, Chi-

cago, 1958. MR 20 #5190.
17. R. T. MOENCK, Studies in Fast Algebraic Algorithms, Ph.D. Thesis, Univ. of Toronto,

1973.
18. V. STRASSEN, "Gaussian elimination is not optimal," Numer. Math., v. 13, 1969, pp.

354-356. MR 40 #2223.
19. S. GOLOMB, L. WELCH & A. HALES, "On the factorization of trinomials over GF(2),"

JPL Memo 20-189 (July 1959)(as referred to in [131).
20. V. STRASSEN, "Die Berechnungskomplexitat von elementarsymmetrischen Funktionen

und von Interpolationskoeffizienten," Numer. Math., v. 17, 1972/73, pp. 238-25 1. MR 48 #3296.
21. S. LANG, Algebra, Addison-Wesley, Reading, Mass., 1968. MR 33 #5416.
22. G. E. COLLINS, The SAC-1 System: An Introduction and Survey, Proc. 2nd SIGSAM

Sympos., ACM, New York, 1971.
23. S. C. JOHNSON & R. L. GRAHAM, "Problem #7," SIGSAM Bull., v. 8, No. 1, ACM,

New York, February 1974, p. 4.
24. R. FATEMAN, J. MOSES & P. WANG, "Solution to problem #7 using MACSYMA,"

SIGSAM Bull., v. 8, No. 2, ACM, New York, May 1974, pp. 14-16.
25. G. E. COLLINS, D. R. MUSSER & M. ROTHSTEIN, "SAC-1 solution of problem #7,"

SIGSAM Bull., v. 8, No. 2, ACM, New York, May 1974, pp. 17-19.

